The author embarked on a journey to teach themselves Zermelo-Fraenkel set theory with the axiom of Choice (ZFC) over Christmas. ZFC is crucial as it aims to create a consistent set theory free of paradoxes like Russell’s paradox. Set theory forms the foundation of mathematics, with all mathematical concepts expressible set-theoretically. Constructing whole numbers in set theory revealed surprising similarities to biological leaves. The Von Neumann Ordinals offer a recursive way of representing natural numbers, showcasing self-similarity in tree visualizations. Force-Directed Graph Layouts beautifully display numbers transforming into leaves, raising questions about their intrinsic structure. Future explorations include investigating rational numbers’ resemblance to leaves.
https://www.christo.sh/numbers-are-leaves/